
Gradient-Free Supervised and Unsupervised Learning with Rewards

Sayna Ebrahimi
UC Berkeley

Berkeley, CA, 94720
sayna@eecs.berkeley.edu

Anna Rohrbach
UC Berkeley

Berkeley, CA, 94720
anna.rohrbach@berkeley.edu

Trevor Darrell
UC Berkeley

Berkeley, CA, 94720
trevor@eecs.berkeley.edu

Abstract

We develop a method for policy architecture search and
adaptation via gradient-free optimization which can learn
to perform autonomous driving tasks. By learning from
both demonstration and environmental reward we develop
a model that can learn with relatively few early catas-
trophic failures. We first learn an architecture of appro-
priate complexity to perceive aspects of world state rele-
vant to the expert demonstration, and then mitigate the ef-
fect of domain-shift during deployment by adapting a pol-
icy demonstrated in a source domain to rewards obtained
in a target environment. We show that our approach allows
safer learning than baseline methods, offering a reduced
cumulative crash metric over the agent’s lifetime as it learns
to drive in a realistic simulated environment. A full ver-
sion of this paper [2] and videos can be found in https:
//saynaebrahimi.github.io/corl.html

1. Introduction
Deep architectures have become popular as function ap-

proximators to represent action-selection policies. Com-
mon approaches to learn the parameters of such models in-
clude reinforcement learning and/or learning from demon-
stration: both learn model parameters to maximize expected
reward, mimic human behavior, and/or achieve implicit
goals. However, the design of policy architectures, espe-
cially in a deep learning paradigm, remains relatively unex-
plored. Architectures are typically selected through a com-
bination of intuition and/or trial and error.

Learning to learn, including the learning of learning ar-
chitectures, is a long-articulated goal of AI, and many meta-
learning and lifelong learning schemes have been proposed
(e.g., [6] offered seminal views; see [5] for a survey).

We investigate policy architecture search using gradient-
free optimization and learn optimal policy structure for au-
tonomous driving tasks. We propose a model which learns
jointly from demonstration and optimization, with the goal
of safe training: minimizing the amount of damage a vehi-

cle incurs to learn a threshold level of performance. We
base our approach on exploration-based schemes due to
their ability to optimize model weights and architecture hy-
perparameters, leverage expert demonstrations, and adapt
to reward obtained in new domains. We believe that a
model which can initialize from demonstration, and learn
an optimal policy from that foundation, is likely to achieve
higher performance while maintaining the constraint of safe
training, compared to models which must randomly search
through action space during initial learning, or which learn
from a reasonably safe demonstration but cannot further op-
timize performance based on environmental reward.

Often, deep models which learn to perform in one do-
main fail to perform well when deployed in another setting,
such as differing weather or lighting conditions. We show
that our method can effectively and safely adapt a model
demonstrated in one environment but deployed in a visu-
ally different environment based on the reward signal in the
latter domain, even when the agent is initialized far from
initial demonstrations. Our approach leverages only target
domain reward, and makes no assumptions about domain
alignment, explicit or implicit, nor assumes any demonstra-
tion supervision in the target domain.

To achieve these goals, we present a gradient-free op-
timization algorithm inspired by [4] with a modification
in noise generation that results in estimating the gradients
more efficiently and accurately (Sec. 2.1). We then ap-
ply this algorithm to search over variable length architec-
tures Next, we combine our gradient-free policy search with
demonstrations to learn a better policy that adapts to the new
environment by receiving rewards as feedback (Sec. 2.3).
We experimentally show that our architecture search model
finds a policy on the GTA game environment that outper-
forms previously published methods (e.g., [1]) in end-to-
end steering prediction from demonstrations, and that it can
be efficiently adapted to learn to drive in previously un-
seen scenarios (Sec. 3). Our model reduces the number of
crashes incurred while learning to drive, compared to base-
lines based only on reward or demonstration but not both,
or compared to previously proposed fixed architectures that

4321

https://saynaebrahimi.github.io/corl.html
https://saynaebrahimi.github.io/corl.html


were not optimized for the domain.

2. Approach
We propose a learning-to-learn model which includes ar-

chitecture optimization, parameter learning, and representa-
tion adaptation over different time scales. Our approach can
be summarized by the following two steps. (1) Given expert
demonstration, search over architectures and parameters to
find a policy that best mimics performance by monitoring
the obtained accuracy and number of parameters. (2) Hav-
ing learned from demonstration, adapt the model to the re-
ward provided by the target environment. In both steps, it is
essential to derive a function approximator that optimizes
an objective function. We use a gradient-free optimiza-
tion algorithm [4] that maximizes a parametrized reward
function using gradient estimation to perform architecture
search (Sec. 2.2) and policy learning (Sec. 2.3).

2.1. Gradient-free optimization algorithm

Let F (·) be our objective function parametrized by θ
which is an n-dimensional vector. F can be the reward that
an environment provides for an agent when it executes a
policy with parameters θ; our goal is to maximize the ex-
pected reward by perturbing the policy parameters, denoted
as θ̂, by moving in particular directions. The parameter es-
timate update can be performed using a general stochastic
form:

θ̂t+1 = θ̂t + αt ∇θ̂y(θ̂) (1)

where y(·) is an approximation of the objective function
(i.e. y(·) = F (·) + noise) and ∇θ̂y(θ̂) is the gradient of
objective estimate that can be approximated by any gradi-
ent estimator in the family of finite difference methods. The
gradient is estimated in a randomly chosen direction by per-
turbing all the elements of θ̂t to obtain two measurements
of y(·) as follows:

y
(+)
t = F (θ̂t + ct∆t) + ε

(+)
t (2)

y
(−)
t = F (θ̂t − ct∆t) + ε

(−)
t (3)

where ∆t ∈ Rn is a vector of n mutually independent ran-
domly perturbed variables taken from a zero-mean distribu-
tion. While there is no restriction for it to have a specific
type of distribution, we use Laplace distribution, as it tends
to choose orthogonal directions in the long run. Other re-
cent efforts [7] utilized Gaussian noise to sample mirrored
projections. ct is a small positive number and ε

(+)
t and

ε
(−)
t are the noise associated with evaluating F (·) such that:
E
(
ε
(+)
t − ε(−)

t |{θ1, θ2, · · · θt},∆t

)
= 0. The gradient esti-

mate can then be computed as:

∇θ̂ty(θ̂t) =
[
y
(+)
t −y(−)

t

2 ct ∆t1
· · · y

(+)
t −y(−)

t

2 ct ∆tn

]T
(4)

Parameter estimates can be updated by replacing the gradi-
ents in Eq. 1 with those found in Eq. 4.

2.2. Learning an optimal initial policy from demos

Inspired by [7] we have used a recurrent neural network
to sequentially generate the description of layers of an archi-
tecture from a given design space defined by the user. The
RNN acts as a controller which generates the architecture
description defined by its hyper-parameters chosen from a
pre-defined search space. Our model uses the demonstra-
tions to provide the reward function, ((i.e., F above), to
train the RNN. Unlike backpropagation which suffers from
gradient vanishing while training RNNs, gradient-free algo-
rithms do not have such an issue [4]. Our RNN controller
specifies three types of layers: convolutional, fully con-
nected, and max-pool which can have inter-layer dropouts.
For the reward signal, we use the negative value of total
loss function. At the last layer of the network, we regress
to three real-valued numbers, each having a mean-squared
loss. The total loss is the sum of all three losses. We use
a novel reward function (Eq. 5) that not only results in the
minimum total loss but also grows the architecture as long
as the loss keeps decreasing.

R = R1 − λ (R1)R2 (5)

whereR1 is the negative of the minimum loss (or maximum
accuracy in a classification problem) on the validation set
for the last 5 epochs and R2 is the total number of param-
eters in the child network. λ is the Lagrange parameter de-
fined as a function of the first sub-reward in a ReLU-based
fashion.

2.3. Adapting policy to a new domain

As confirmed experimentally below, it is well known
that a policy learned from behavioral cloning can perform
poorly when evaluated on inputs with a domain shift rel-
ative to the demonstration supervision. To overcome this,
we further use the gradient-free search algorithm described
in Sec. 2.1 to adapt a driving policy learned from demon-
stration in a source domain based on rewards in a target
domain. We experiment with the setting where the driving
domain attributes are substantially different than provided
as demonstration.

In the driving scenario, we wish to learn to drive with op-
timal or near-optimal performance, using the reward func-
tion in target domain which is composed of two factors (we
receive +1 if obeyed and 0 if violated): 1) No crashes with
other objects 2) Staying within the lane lines if they are
available in the driving scene. We have used the lane re-
ward function and accident detection function defined in [3]
source code as a paths.xml file.

4322



(a)

Figure 1. (a) Illustration of the baseline and learned architectures:
(1) prior work [1], (2) our small network, (3) our large network

3. Experimental evaluation
All the experiments are executed in the GTA game en-

vironment using a publicly available plugin [3]. We have
collected a dataset of an expert policy by playing GTA col-
lecting 2, 267, 662 images of size 66× 200 similar to [1].

3.1. Learning policy architecture from GTA demos

We present our architectures and comparison to prior
work in Fig. 1(a)(2). The corresponding performance com-
parison is shown in Tab. 1. The smallest architecture (in
terms of the number of parameters) that we have built is
shown in Fig. 1(a), which outperforms the baseline [1]
with a smaller total loss. By not restricting our architecture
search algorithm to be bounded by a number of parameters,
we learn a larger network (1(a)(3)) that has over 2M param-
eters and obtains a minimum total loss of 0.085 on the train-
ing set and 0.088 on the validation set. We use this network
as our initial driving policy in the next section and improve
it further in the reward-providing GTA environment.

Table 1. Total MSE obtained using architecture proposed in prior
work [1] and our models obtained by architecture search on
demonstrations.

Model # of params Train loss Val. loss Test loss
Bojarski et al. [1] 252,241 0.098 0.11 0.212
Our small arch 228,227 0.093 0.096 0.197
Our large arch 2,198,723 0.085 0.088 0.185

3.2. Safe policy adaptation

Here we show the results for adapting the learned policy
on demonstrations to the target domain using rewards. We
use our large network and the baseline architecture [1] in
Table 2. We start with an initial model, either using a be-
haviorally cloned or randomly initialized policy and gradu-
ally improve it by receiving rewards from the environment.
We evaluate both models with and without being adapted to
demonstration forming four cases: (1) the baseline network
of without demonstration (i.e., with randomly initialized
weights) and (2) with behaviorally cloned initial weights,

Table 2. Comparison of two policies (our large network and [1])
learned based on target domain reward, with and without source-
domain demonstrations.

Model Wall-clock
convergence

Total # of
crashes

Total # of middle-lane
keeping violations

(1) Bojarski et al. [1]
w.o demo 154 hrs 15,565 18,662

(2) Bojarski et al. [1]
w. demo 74 hrs 1,387 3,243

(3) Our large arch,
w.o. demo 114 hrs 6,877 8781

(4) Our large arch
w. demo 53 hrs 832 982

Table 3. Comparison of performance (average total loss) of two
policies (our large network and [1]) at test time on target domain
(T) when they are trained with rewards from target domain, source
domain (S), and both (T+S).

Behavioral
cloning

Demo on S
Rew on T+S

Test on T

Demo on S
Rew on S
Test on T

Demo on S
Rew on T
Test on T

Baseline 0.212 1e-4 - -
Our large

arch. 0.185 1e-5 7e-5 3e-5

(3) our larger architecture without demonstration and (4)
with behaviorally cloned initial weights. Results averaged
across several runs are presented in Tab. 2 where our model
optimized with demonstration outperforms all other cases.
In particular, our model has the least number of cumulative
crash occurrence prior to converging to 100% of averaged
reward.

4. Conclusion
The goal of this work is to learn a policy for an au-

tonomous driving task minimizing crashes and other safety
violations while training. To this end we propose an al-
gorithm which learns to generate an optimal network ar-
chitecture from demonstration using a new reward func-
tion that optimizes accuracy and model size simultaneously.
We show that our method can adapt the model learned by
demonstration to a new domain relying on target environ-
mental rewards. Experimental evaluation shows that our
model achieves higher accuracy, fewer cumulative crashes,
and higher target domain reward.

References
[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,

P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al. End to
end learning for self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[2] S. Ebrahimi, A. Rohrbach, and T. Darrell. Gradient-free policy ar-
chitecture search and adaptation. In Proceedings of the 1st Annual
Conference on Robot Learning, volume 78 of Proceedings of Machine
Learning Research, pages 505–514. PMLR, 13–15 Nov 2017.

[3] A. Ruano. Deepgtav. https://github.com/ai-tor/
DeepGTAV, 2017.

[4] T. Salimans, J. Ho, X. Chen, and I. Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864, 2017.

4323

https://github.com/ai-tor/DeepGTAV
https://github.com/ai-tor/DeepGTAV


[5] J. Schmidhuber. Deep learning in neural networks: An overview. Neu-
ral networks, 61:85–117, 2015.

[6] S. Thrun and L. Pratt. Learning to learn. Springer Science & Business
Media, 2012.

[7] B. Zoph and Q. V. Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016.

4324


